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The problem of stability in the first approximation is solved for systems with aftereffect by integrodifferential equations of the 
Volterra type, using ideas and methods developed by Lyapunov [1] in the theory of the stability of differential equations and 
later developed further in the context of the theory of non-linear oscillations [2, 3]. © 1997 Elsevier Science Ltd. All rights reserved. 

Problems of the stability and existence of solutions of various types of equations with aftereffect and 
functional-differential equations have been considered in a great many publications, the results of which 
are reflected fairly well in [4-8]. The method of Lyapunov functionals [4, 5, 9] is widely employed in 
stability analysis. 

In [10-13] we considered integrodifferentiai equations of the Volterra type, which are exponentially 
stable in the firs't approximation, with non-linearities represented by holomorphic functions of the 
variables of the problem and of given functionals. The general solution in the neighbourhood of an 
asymptotically stable zero solution was represented by the series of Lyapunov's First Method. A 
majorizing equation was constructed by using a majorant for the non-linearity in the form of a power 
series with non-negative coefficients (Cauchy majorant). The majorizing equation was used to obtain 
estimates for the region of attraction. 

In this paper an attempt will be made to improve the estimates for the attraction region by using 
Lyapunov majoreaats [3] as majorizing functions and constructing general solutions by the method of 
successive approximations. At the same time the class of non-linear functions occurring in the equation 
will be enlarged by dropping the holomorphicity condition. 

Suppose the system with aftereffect is given by the equation 

d x  t 
"~'t =A(t)x+ ~ K(t,s)x(s)ds+F(x,y,t), xcR ~, yER m (I) 

in which the continuous n x n matrices A (t) and K(t) are defined on sets I = {t e R: t I> t 0} and 11 = 
{(t, s) ~ R2: t o ~< :~ ~< t < +~},  respectively, and have bounded elements. The variabley is defined by 
the relation 

! 

Y= ~ K1(t,s) f(x,s)ds (2) 
q~ 

where the kernel Kl(t, s) is of the same type as K(t, s) and the vector functionf(x, t) = col(f1 . . . . .  fro), 
defined on a set Bl(X) x L where Bl(X) = {x e R": II x II < R1) for some R1 > 0, is a C 1 function of x, 
continuous and bounded with respect to t e I and such that f(0), t) -= 0. The vector function F(x,y, t) 
= col(F1, . . . , /7 , ) :  B2(x,y) x I ~ R ~, where B2(x,y) = {x e Rn, y e Rm: IIx II < RI, UY II < R2} for given 
R i > 0 (i = 1, 2), is a C 1 function of x, y and a continuous and bounded function of t ~ I such that 
F(0, 0, t) ---- 0. In addition, F(x, y, t) is such that if the variable x is replaced by ex (this being done also 
in the expression for y; e is a parameter), then it becomes a vector function F' with the property 
0F'/~ek =0 = O. 

Let us consider the Cauchy problem with initial valuex(t0) = x 0. Henceforth we will use the following 
notation. Let B be a matrix (vector). Then the symbol Bo will denote the matrix (vector) each of whose 
elements (components) is the absolute value of the corresponding element (component) of B. 
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We introduce vector functions similar to the Lyapunov majorants of [3]. These will be majorants 
• (x, y) = co l (q)1 , . . . ,  ~ , )  > 0, q0(x) = col(q01,. . . ,  q0m) > 0 for F(x, y, t) and f(x, t), respectively, i.e. 
vector functions with positive components which are monotone increasing functions of each of the 
coordinates xk, yj of x, y and whose first derivatives are positive, continuous, bounded, monotone 
increasing functions in B2(x,y) (or in Bl(x)), and moreover 

F.(x,y,t)  <~ d~(u, o), fo(x,t) <~ (p(u) 

( /,(x 3 
, c ) - - - - " ) ,  ~< , k = 1 , 2  . . . . .  n; j = 1 , 2  . . . . .  m 
t, ax ). 

4)(0,0)=0, ~0(0)=0, ~ffiO, ~=0 for u=O, p =0 

(3) 

for all x. ~< u, y ~< v, t ~ I and (u, v) e B2(u, v). 
Let X(t, to) be a fundamental matrix of the linearized equation (1) such that X(t0, to) = En. 
We assume that the following conditions hold for t E I, (t, s) e 11 

Xo(t, to) <~ Cexp[-ct(t-to)], Kt.(t,x ) ~< Clexp[-~(t- '~)] (4) 

where ct > 0, I~ > 0 are constants and C > 0, C1 > 0 are positive constant n x n and m x n, matrices, 
respectively. 

We introduce the notation 

V(x,p)  = pCiq~(x), v = min(ct, l~) 

M(Y) =-~ m = v--,vlim Mf¥) (5) 

Theorem 1. Assume that Eq. (1), (2) satisfy the conditions listed above for the continuity and 
differentiability of the functionsA(t), K(t, s), Kl(t, s), F(x,y, t),f(x, t) and that conditions (4) are satisfied. 
Let ~(x, y), ~ x )  be given Lyapunov majorants, so that inequalities (3) hold, in addition, let 

Ok(F.U,~) ~ el+SOk(u,U), k = 1,2 ..... n 

q)/(eu) ~ e~j(u), j = 1 , 2  ..... m (6) 

for any e (0 ~< e ~< 1), some 8 = const > 0 and any non-negative u and v such that (u, v) ~ B2(u, v). 
Then 
1. the trivial solution of Eq. (1), (2) is exponentially stable; 
2. the boundary F of a set G C Bl(xo) belonging to the region of attraction is given by the equations 

det(E n - NCd~' (u)  I du) = 0, u = C(x o. + N~'(u))  (7) 

(~ ' (u)  = ~(u, V(u, m)), N = 11 or) 

Proof. Fix a number T > 0 such that 7 < v, a -7(1 + 8) ¢ 0. Equation (1), (2) with initial value x0 is 
equivalent to an integral equation [7] 

t 

x(t) = X(t, to) x o + ~ X(t,x) F(x(~),y(~),'c) dx (8) 
tO 
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Let us represent the solution of Eq. (8), (2) in the form of successive approximations x(k)(t), y(k)(t) 
(k = 1, 2 . . . .  ), where xO)(t) = X(t, to) Xo. 

For any k I> 1 and t ~ I we have the inequalities 

:t,(k)(t) ~< exp [ -y ( t -  to) ] u (k), y(,k)(t) < exp[ -y ( t -  t 0)] V(u (k). M I) (9) 

where u (k) > 0 are constant vectors. 
The proof proceeds by induction. I fk  = 1, the assertion is true forx!O(t) by virtue of (4). Fory!O(t), 

taking (3) and (411 into consideration, we obtain the estimate 

t 
Y(I)o) ~ ~ CI exp[-~(t-'O]exp[-y('C-to)]CO(u(l))d'~ <exp[-y( t - t0)]  V(u(i),MI), (10) 

to 

M~ = fl3-,t) -~ 

Suppose that inequalities (9) hold for k = 1, 2 . . . .  , s - 1. Then for k = s (s > 1) it follows from the 
equality 

t 

x<S)(t) = X(t,t O) x 0 + ~ X(t,x) F(x(S-I)(x),y(S-I)(x))d't (11) 
to 

and from (9), (3), (4) and (6) that 

t 
xt. s) (t) ~ Cexp[-y(t,t 0)] x0. + C ~ exp[-ct(t - x)- (1 +/i) y( ' t-  t o )] ~(u fs- I), V(ufS-I), MI )) dx 

to 

exp[-y(t -- t 0)] C(zo. + NlO(u ¢s-I), V(u<S-I),Ml ))) (12) 

where the constant N1 > 0 satisfies the following inequality for t ~ I 

N! ;B (exp[-yS(t_to)]_exp[_(ot_y)(t_to)])l[ot_(l+8)y ] 

An estimate analogous to (10) can be established fory(')(t), so that inequalities (9) will be true for 
k ~ s .  

Let ~(k) > 0 be a monotone increasing sequence, independent of t, such that ~(k) >~ X!k)(t), implying 
that the sequence x(k)(t) is convergent. Define. 

fa<k-,>,Vfa<k-,),M))/, k = 2 , 3  . . . .  (13)  

The sequence ~(k) is majorizing for x(k)(t); it converges to the unique positive solution u = U(Xo) of 
the equation 

u = CCx°" + l dp(u' (14) 

which always exists in view of the properties of the functions O(x, y), 9(x) [3]. 
Indeed, applyinl~; an estimate analogous to (10), without isolating the exponentially decreasing term, we 

obtain x!D(t) <<- V(~ (0, M), and also 
t 

(:~(2)(t)- x(1)(t)). ~ C ~ exp[-a(t- ~)l F, (x (I) (x),y (I) (x)) d~ < ~(2) _,~(1) 
tO 

If it is true for all k = 1, 2 , . . . ,  s - 1 that 

(xfk)(t)- x (k-l) (t))° < ~(~) - ?~k-I) 

then, using the properties (3) of the Lyapunov majorant ([3], Chap. II), equalities (11) and (13), and 
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the estimate y!k)(t) ~ V(~ (k), M), we conclude that for k = s 

t 

(x(S)(t)-x(S-l)(t)). ~ C S exp[-ot(t- x)](F(xfS-l)(x),y(S-l)(x))- 
to 

- F (x  (,-2) ('c), y(S-2) (x))). dx < C (q>(~(s-t~, V(t~(s-I), M)) - 

I x  

_ O(,~(s-2), V(~(s-2),M))) = fi(s) _ ~1~-I) 

The quantity M = M(y) of (5) is a monotone decreasing function of 7 in the interval (0, v), tending 
to a finite limit as y ~ v. 

Putting the constant M in (14) equal to m = lim M(y) ---> v, we obtain the second equation of (7). A 
solution u = U(Xo) of this equation exists for allx0 e G, where the boundary F of G is defined, as follows 
from [2, 3], by Eqs (7). Thus, the solution x(t) of Eq. (1), (2) with initial value x0 e G may be obtained 
as the limit of uniformly convergent successive approximations for all t e I, and by (9) x(t) ---> 0 
exponentially as t ~ +o0. This completes the proof of the theorem. 

In specific cases, along with the second equation of (7), one can construct majorizing equations that 
enable one to establish wider estimates for the region of attraction. The following proposition is an 
example. 

Theorem 2. Under all previous assumptions about the properties of the functionsA(t), K(t, s), Kl(t, 
s), F(x,y,  t ) , f (x,  t), suppose that inequalities (4) hold, subject to the condition Ix < 6, and that d~(x,y), 
q~(x) are Lyapunov majorants which are polynomials (or convergent power series) with non-negative 
coefficients, such that the terms of lowest degree in ~(x, y) are of order p />  2. 

Then the assertions of Theorem 1 with Eqs (7) are true, with the following substitutions 

O'(u) = (~(u, V(u, m I)), m I = (6- Ix)-l, N = I ppt(|-t,) 
Ix 

The functions q~(u, v), (p(u) of Theorem 2 need not satisfy any additional condition like (6), and the 
majorizing sequence u -(k) ,> xfk)(t) may be a sequence defined by relations analogous to (13) with I/ix 
replaced by N and M by M1, where 

N >~ N ' ( t )  = (exp[-py( t  - t 0)] - exp[-ot(t - t 0)]) / (ix - py) (15) 

These relations are based on inequalities (12), without isolating the exponential factor. 
The majorizing equation u = limk__~ u -(k) becomes 

u = C(xo. + Ne~(u, V(u, m I ))) 

where N is the maximum of t E I (15) over N'( t )  for 7 = ct. 
Note that, of course, the estimate for the region of attraction ensuing from Theorem 2 is worth using 

only provided 6 - Ix is not small. In particular, it is effective when Eq. (1) is independent ofy.  
Let us investigate the equation 

dx = A(t)  x +  i K( t , s )  x(s)  ds+ F(x ,y , z , t ) ,  z ~ R t (16) 
dt to 

in which x, y, A(t), K(t, s) have the same properties as in (1), (2), and which depends on an analytic 
functional represented by Volterra-Fr6chet series of multiple integrals [14, 15, Chaps 1 and V]), so that, 
ifz = col(zl . . . .  , zt), then 

zi(t)  = ~. ~ t t 
~".~ K/Ck)(t, sl ..... sk)x,t(sl) x~(sk)dsl...ds k i=1,2 ..... l (17) 

k=l/(k)=i to to 

wherej(k) is a sequence of indices j l , . . .  ,Jk and the kernels K~ (k) (t, s 1 . . . . .  sk): I k ---) R are continuous 
and bounded, with 
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I k={( t , s  ! ... . .  Sk)ERk+l:to <~ Sj ~ t<+**,  j = l , 2  ..... k} 

The function F(x,y, z, t): B3(x,y, z) x I ---) R n (the domain B3 is analogous to B2 for (1)) is a C 1 function 
with respect tox ,  y, z, bounded as a function o f t  ~ / ,  F(0, 0, 0, t) --- 0, and i fx  is replaced by ex (this 
being done in (2) and (17), also) it becomes a function F'  such that OF'/~ I~ = 0 = 0. 

Let us assume that the integral kernels in (17) satisfy the following exponential estimate 

[,t ] IK/'k)(t ,  sl ... . .  sk~ <~ C2ex p - X p ( t - S p )  (18) 

×t, > 0,  C 2 = cons t  > 0 

where ×t, ~ × (P := 1, 2 . . . .  ) for some ~c > 0. 
Let q~(u, v, w) col(q~ . . . . .  ~ )  be a Lyapunov majorant for F(x, y, z, t) which satisfies conditions 

in u, v, w analogous to conditions (3) for q~(u, v). 
Let  W(x, p, q) ~- 1~ denote the vector with equal components 

( )-' 
W o ( x , p , q ) = p C 2 ~ . x  k 1 - q  x k ; p , q - cons t  

k=l k---I 

and let M2(y) be the quantity M(y) of (5) with 13 replaced by ~c; we also define v = min(ct, 1~, !c) and 

! ( y ( l + p ) ~  t" 

fi ) '  
L= y(l +p)  m i = lim Mi(~), i = 2 , 3  I~-':0+p)' ~--,~ 

Theorem 3. Suppose Eq. (16), (2), (17) satisfies conditions (4) and (18), and let q~(u, v, w), q~(u) be 
given Lyapunov majorants for the functions F(x, y, z, t), f(x, t), satisfying the inequalities 

~0j(EU) ~" CI+0{pj(/~), j = l , 2  ..... m; k = l , 2  ..... n 

for any e (0 ~< e ~--" 1), certain constants/5 > 0, p I> 0 and any non-negative u, v and w such that (u, v, 
w) ~ B3(u, v, w). 

Then 
1. the trivial solution of Eq. (16) is exponentially stable; 
2. the boundary F of a region G belonging to the region of attraction is defined by Eqs (7) with 

~P'(U) = dP(U, V(u, m3), W(u, m2, m2)). 
The proof is analogous to that of Theorem 1. 
Estimating the :~uccessive approximations zki(t) of the functionals zi(t ) in (17) and using (18) and (9), 

we obtain, for example, for k = 1 

£ i i [ , ..lj ,,, ,,,as as • .. C2exp-~.(xt,(t-sp)-Y(st,-to))lUh...uj i i... k < 
k=l j(k)=l t o t o p=l 

<C2 ~ ~ k-l O~ O~ -l M 2 (¥)ujl . . . u j ~ ( x - y )  e x p [ - ¥ ( t - t o ) ] =  
k=l j (k)=l 

= Wo(U 0), (x - y)-J, M2 (y)) exp[-y(t - t o )] (19) 

where M2(y) is the maximum over t e I of the function (exp[-7(t - to)] - exp[--~(t - t0)D/(× - 7). 
Inequalities similar to (19) hold for ~ (t) for all k I> I. The construction of a majorizing equation 
uses estimates forz~ (t) of the same type as (19), but without isolating the exponential term; to be precise: 
I zi (k) [ < Wo(U (k), M2(Y), M2(y)). 

Note that M2(y) is a monotone decreasing function o fy  in the interval (0, ~:) taking values between Ic -1 
and (er) -1. The function T > 0, whose singularities are removable, also decreases monotonically as Ma(y). 

In applications one often limits attention to segments of series (17). In that case the majorants for 
zi(t) obtained in this way may be polynomials. 
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Let  us consider some simple examples of constructing est imates for regions of attraction. 

Eramp/e 1. Consider  the equation 

i ! dx K ( t _ s ) x ( s ) d s _ s i n x + b y 2  Y= ~ K l ( t _ s ) x ( s ) d  s 
dt to to 

(2o) 

x, y E R !, h = const 

where K(t) and Kl(t) satisfy the assumptions of Theorem 1. Suppose that all the roots 7q of the characteristic equation 

k + 1 - "~ K(s)  exp(-~.s)  ds = 0 
0 

corresponding to (20) are such that  Re 2q < ~.' < 0. Then the numbers ct and C occurring in the first inequality of 
(4) exist. 

By Theorem 1, if u = u0, la = ~ is a positive solution of the system of equations 

u = C( I I+N~' (u ) ) ,  C N d ~ ' ( u ) l d u = l  (21) 

then the inequality I x0 I < la0 provides an estimate for the region of attraction. As  Lyapunov majorant  we take 
• (x,y) = x3/6 + I b ly 2. Then for (21) we have tiC(u) --- u3/6 + I b I (mClu) 2, m = (e15) -1 if 15 ~ a ,  and m = 15-1 (a15-1)m4, 
m4 = 0t(15) - a) - I  if 0t < 15. Solving system (21), we obtain I10 = uolC - O(Uo)/Og where u0 = --c + (c 2 + 2o~/C) 1r2, 
c = 2 1 b l m 2 C  2. 

A remark is in order  regarding this example. Let us use the above Lyapunov majorant  tl~(x, y) to investigate 
an equation with a non-linearity that  is not a holomorphic  function of x, given in some neighbourhood of 
zero such that  I x I < R1 (R1 = const > 0). Suppose that  the right-hand side of Eq. (20) is re tained for I x I ~< eo 
(0 < e0 < R1), but  for e0 < Ix l < RI the non-l inear t e rmsx  on the right that  depend o n z  = ¥1(x) are replaced by 
quadrat ic  terms ¥1(x) such that  the parabola z = ¥1(x) passes through points x = 0, z = 0 and x = e~ z = e o -  sin 
r~  preserving the continuity a t x  = e0 of the first derivative for the non-l inear function thus constructed. Then the 
est imate obtained in this example for the region of at traction remains valid. It is clear, however, that  if one 
determines an est imate of the region of attraction for Eq. (20), thus transformed,  in the region I x I < ~ ,  where 
the fight-hand side of the equat ion is holomorphic,  then for some small e0 a narrower est imate of the region of  
at traction will be obtained.  This remark stresses how important  it is to drop  the holomorphici ty requirement  in 
the general case. 

Example 2. Consider  a rigid body in a uniform gravitational field of force, capable  of  revolving about  a fixed 
horizontal axis OO1 which is the axis of torsion of two visco-elastic rods at tached to the body (as a support) .  It is 
assumed that  the axis OO1 is not deformable.  The second end of  each rod is fixed. Let  0 denote  the angle in the 
plane orthogonal  OO1 between the downward vertical and a straight line passing through OO1 and the mass centre,  
which lies at a distance r from the axis. In equilibrium 0 = 0. When  the body rotates,  the rods are twisted. The  
moment  about  OO1 of the forces applied to the body by the rods may be expressed as [15] 

I 

My = - k O +  f K ' ( t - s ) O ( s ) d s ,  k = c o n s t > 0  
to 

Let  J be the axial moment  of inertia of the body and mg its weight. The equation of per turbed  motion of the 
body about  the equilibrium position 

J d20 = - kO + i K ' ( t -  s) O(s) d s -  mgrsin 0 (22) 
dt2 to 

may be written as a second-order  system, by setting O' = dO/dt, and we can represent  it in the integral form (8). 
One equation of this system is 

! 

0( t )  = Xll (t - t o ) 0 0 + x12 (t - t o ) O~ + J x12 (t - s) F(O(s)) ds (23) 
to 

O0=O( t0 ) ,  O~)=O'(t0),  F ( O ) = m 0 ( d - s i n O ) ,  m o = m g r l J  

where (xq(t - to)) = X(t - to) is a fundamental  matrix. We will assume that the first inequality of (4) holds with 
C = (co) (i, j = 1, 2) and apply Theorem 2 directly to Eq. (23). Equations (7), with p = 3, N = 3-3~/t~ and 
• (ul) = mou31/6, where ul "> 0, are 
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Fig. 1. 

ut--c, tlo01+ct21o61+- u?, I-du?=0. 

The required estimate for Eq. (22) is 

• 2 d - y  2 ct lool+ct21ool<co, 

The form of the region (23) is shown in the Fig. 1. 
Incidentally, the monotonieity condition imposed on the Lyapunov majorants and their first derivatives with 

respect to all variables may be slightly weakened, as follows from the general properties of  majorizing equations 
[3, Chap. 11. 

This research was carried out with support from the Russian Foundation for Basic Research (93- 
013-16242) and the International Science Foundation (MAK 000). 
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